The Saccharomyces cerevisiae Genes, AIM45, YGR207c/CIR1 and YOR356w/CIR2, Are Involved in Cellular Redox State Under Stress Conditions

نویسندگان

  • João Lopes
  • Maria Joana Pinto
  • Aurora Rodrigues
  • Filipe Vasconcelos
  • Rui Oliveira
چکیده

Mammalian electron transfer flavoproteins comprise a mitochondrial matrix heterodimer, and an electron transfer flavoprotein dehydrogenase localized in the mitochondrial inner membrane. Electrons from primary acyl-CoA dehydrogenases, of mitochondrial metabolism of fatty acids and amino acids, are transferred to the matricial heterodimer and, subsequently, to the electron transfer flavoprotein dehydrogenase, which transfers electrons to ubiquinone of the mitochondrial electron transport chain. Several evidences suggest that these proteins may convey electrons directly to molecular oxygen, yielding reactive oxygen species. In this work, we investigated phenotypes of the yeast mutants affected in the orthologous genes of the matrix heterodimer (AIM45 and YGR207c/CIR1) and of the electron transfer flavoprotein dehydrogenase (YOR356w/CIR2). The mutant strains aim45 and yor356w/cir2 displayed better growth on several non-fermentable carbon sources, which depended on the component of the electron transport chain that accepts the electrons resulting from its mitochondrial oxidation. Furthermore, upon heat shock, the mutant strains presented decreased intracellular oxidation, suggesting that these flavoproteins are a source of reactive oxygen species. Other phenotypes identified suggest that AIM45, YGR207c/CIR1 and YOR356w/CIR2 can protect cells from oxidative and heat stress, which encompass increased heat stress sensitivity, superoxide sensitivity, both only on non-fermentable carbon sources.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Initiation of Ageing Process by Meiotic and Mitotic Recombination within the Ribosomal DNA Genes in Saccharomyces cerevisiae

In the budding yeast of Saccharomyces cerevisiae the tandem repeated of rDNA genes are located onchromosome XII, which is in the nucleolus. There are different types of proteins in the nucleoluskeleton,silencing proteins have got important role in nucleolus.It is shown that meiotic recombination between nonsister chromatids in the rDNA genes are stronglysuppressed, and s...

متن کامل

Purification of Saccharomyces cerevisiae eIF4E/eIF4G/Pab1p Complex with Capped mRNA

Protein synthesis is one of the most complex cellular processes, involving numerous translation components that interact in multiple sequential steps. The most complex stage in protein synthesis is the initiation process. The basal set of factors required for translation initiation has been determined, and biochemical, genetic, and structural studies are now beginning to reveal details of their...

متن کامل

A Genome-Wide Screen in Yeast Identifies Specific Oxidative Stress Genes Required for the Maintenance of Sub-Cellular Redox Homeostasis

Maintenance of an optimal redox environment is critical for appropriate functioning of cellular processes and cell survival. Despite the importance of maintaining redox homeostasis, it is not clear how the optimal redox potential is sensed and set, and the processes that impact redox on a cellular/organellar level are poorly understood. The genetic bases of cellular redox homeostasis were inves...

متن کامل

Distinct Redox Regulation in Sub-Cellular Compartments in Response to Various Stress Conditions in Saccharomyces cerevisiae

Responses to many growth and stress conditions are assumed to act via changes to the cellular redox status. However, direct measurement of pH-adjusted redox state during growth and stress has never been carried out. Organellar redox state (E GSH) was measured using the fluorescent probes roGFP2 and pHluorin in Saccharomyces cerevisiae. In particular, we investigated changes in organellar redox ...

متن کامل

Characterization of Phosphate Membrane Transport in Saccharomyces cerevisiae CEN.PK113-5D under Low-Phosphate Conditions Using Aerobic Continuous Culture

Two different growth media, namely complex and defined media, were used to examine establishment of steady-state conditions in phosphate-limited culture system of Saccharomyces cerevisiae CEN.PK113-5D strain. Using the defined growth medium, it was possible to obtain steady state condition in the continuous culture. The effect of phosphate concentration on the growth of S. cerevisiae in pho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2010